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INTRODUCTION 

Crowley et al. (1992) present a complete solution for a one-dimensional wave theory model 
for the transition from stratified to slug or annular flow regimes--a complete set of equations 
and a solution methodology. This discussion follows up the previous work by presenting this 
one-dimensional wave theory and results in a dimensionless form. Why is the result in dimension- 
less form useful? Figure 1 illustrates a typical design map of the transition in dimensionless form 
generated for: 

• A fixed pipe inclination (horizontal in this case). 
• Constant wall-liquid and wall-gas friction factors (fWL =fw~ = 0.005). 
• Turbulent flow of both phases. 

For these conditions, the dimensionless variables derived in the analysis are: 

• Liquid phase Froude number, j* .  
• Gas phase Froude number, j*.  
• Liquid-gas density ratio, R = PL/PG" 
• Interracial friction factor ratio, f / fwG.  

Figure 1 shows that forf/fw~ = l---equivalent to assuming a smooth interface between the gas and 
the liquid phases--the one-dimensional wave transition can be plotted on a dimensionless map of 
liquid phase Froude number vs gas phase Fr0ude number, with the density ratio as a parametric 
variable. Similar maps could be generated for other pipe inclinations (as shown later) to create a 
set of universal flow regime maps in dimensionless coordinates. 

Figure 1 illustrates the two main reasons why the one-dimensional wave approach is 
instructive: 

• First, the dependence on the liquid-gas density ratio becomes apparent. As this 
density ratio decreases, i.e. as the gas density increases, the transition lies at a 
higher liquid Froude number. This effect of density ratio is most important at 
values of j* < 0.1. The values of the density ratio in figure 1 cover the range from 
air and water at atmospheric pressure (R = 900) to values typical of gas and oil 
pipelines (R = 30). 

• Second, the Taitel-Dukler (1976) model for the transition, represented by the 
dashed line in figure 1, is seen to be an approximate representation of the more 
general one-dimensional wave theory for the condition of low gas density 
(R = 900) only. 

The mechanistic analysis proposed by Taitel & Dukler (1976) is widely used for the prediction 
of this flow regime transition. [Ferschneider et al. 0985) first pointed out that the Taitel-Dukler 
model is actually a special case of the more general one-dimensional wave analysis.] Taitel & 
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Dukler (1976) showed that the simplified transition model could be plotted on a dimensionless 
map in coordinates of the gas phase Froude number and the Martinelli parameter. Since the 
Martinelli parameter is a ratio of the gas and liquid phase Froude numbers if the friction factors 
are constant, figure 1 is equivalent to that result. Figure 1 clearly shows the correspondence between 
the one-dimensional wave model presented here and the Taitel-Dukler approximation. There is an 
additional dependence upon the density ratio in the one-dimensional model in these dimensionless 
coordinates. 

The remainder of this discussion presents the equations in dimensionless form, illustrates the 
sensitivity of the calculations to the key modelling parameters and compares selected data with 
the model on dimensionless regime maps. 

DEFINITION OF THE GENERAL DIMENSIONLESS VELOCITIES 

First, define the following dimensionless velocities: 

ULsP °'5 
J *  = [ g D ( p L  - -  pG)] °'5' 

[l] 

Jc* = [gD (PL - -  PG)]0'S' [2]  

c* = cp°5 
[gD (PL -- PG)]0"5' [3] 

and 

V o p ~  5 

V* = [gD (PL - Po)]05 [4] 

Vw p ~: 5 

V *  = [ g D ( p L  - -  PG)]0"5 ' [5] 

where V0 and V, are components which make up the dynamic wave velocity v,,, and c represents 
the continuity wave velocity. In essence, all of the velocities except UGS are scaled the same and 
are defined as Froude numbers for the liquid phase. The parameter j* in [2] can be put on the same 
basis by introducing the density ratio parameter 

R = P__..~L. [6] 
PG 
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Then [2] becomes 

j * R  °.5 = UosP~ 5 
[gD (PL - Po)]°s • [7] 

SUMMARY OF THE DIMENSIONLESS EQUATIONS 

This section summarizes the equations of the solution in dimensionless form. Reference is made 
to the corresponding dimensional equations in the previous work (Crowley et al. 1992), e.g. [C6] 
refers to [6] in CroWley et al. (1992). 

Equilibrium model for stratified flow 

First, an equation repre~nting the steady-state solution for the void fraction in a stratified flow 
is needed as a foundation for the analysis. The previous dimensional [C6] becomes, in dimensionless 
form, 

~, 32,'~ [ ] \ 32,~ 3 ] 

3 " ".2 ".2 V :woS, V :o E/V* ' +sinO ' + + t81 
*,  ~1LZl G ~[A ~AG] 

where F' = F/[g(pL -- PG)]. All of the dimensionless geometric terms ~'iL, -'iG, q, ~G and & in [8] 
are functions of only the dimensionless liquid level in the pipe h*, defined previously as [C7]-[C 1 I]. 
Equations [I] and [7] herein define the phase Froude numbers. 

Solution for  the liquid Froude number 

The solution procedure requires that the liquid phase Froude number for a steady-state solution 
(F' = 0) be calculated, assuming that j* has a given value and the dimensionless liquid level h* in 
stratified flow is known. Assuming, in addition, that the friction factors fwG and fwL, the density 
ratio R and the interfacial friction factor ratio (fi/fwG) are constants, then the right-hand side of 
[8] can be set equal to zero and rewritten as a quadratic to solve for j*: 

aj .2 + 2by* + d = 0, [91 

where the coefficients in [9] are defined by 

+( f i S i j ~  '~ 
b = _ ~,RO.S~.~ ) [l 1] 

and 

(.128 sin 0~ (4fwG SG jGO2~ (fi Si j~ 2~ d=~, ~:3 )--~, ~ ) :[: \~)" [12] 

Continuity wave velocity 

In order to use the stability criterion developed for the one-dimensional wave model, we need 
expressions for the continuity and dynamic wave velocities (v,, and c) in dimensionless form. 
Equation [C15] for the continuity wave velocity becomes dimensionless as 

v* = ( v *  - v * ) ,  [131 

where the dimensionless reference velocity Vg (formerly [C16]) is given by 

:,:W*. 
A~R o.s] 

l l__ L 
E14j 
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The general relationship used to derive the wave velocity VW ([C17]) becomes, in dimensionless 
form, 

and the derivatives in [15] (formerly [C18l_[C20]) are now: 

*($)(S)( -j$+Ro.;L2G)y 

and 

051 

WI 

Note that these explicit derivatives in [16H18] are only valid if constant friction factors are 
assumed. Equation [18] requires additional derivatives of the geometric parameters defined 
previously as [C2 1 j-[C23]. 

Dynamic wave velocity 

The equation for the square of the dynamic wave velocity is obtained by taking the previous 
dimensional [C24] for c2 and using the definition in [3] to get 
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Figure 2. Effect of interfacial friction on the dimensionless stratified transition for a horizontal pipe. 

SOLUTION PROCEDURE 

Since dynamic waves move with a velocity of _+c* relative to the weighted mean velocity V*, 
while continuity waves move only in one direction at the velocity v*, the criterion for instability 
involves the squares of the velocities: 

v~ .2 > c .2 .  [20] 

The stratified-to-slug flow regime transition occurs when the two velocities are equal in [20]. 
The equations for v~* and c* depend upon the liquid fraction and both superficial phase velocities, 
and it is not possible to solve either equation explicitly for one parameter in terms of the other 
two parameters. Therefore, an iterative solution procedure is required to find the flow regime 
transition. The solution procedure is the same as described in Crowley et al. (1992), except that 
the dimensionless forms of the equations as described in section 4 may be substituted for the 
dimensional versions. 

T Y P I C A L  M O D E L  S E N S I T I V I T Y  A N D  D A T A  C O M P A R I S O N S  

Figure 2 shows the sensitivity to the interfacial friction factor by assuming a high value of 
f/fwG -- l0 in the one-dimensional wave model. Comparing figures l and 2, the effect is quite small 
for horizontal pipes. In general, the transition values of the liquid Froude number vary no more 
than a factor of 2 at j* < 1.0 for this range 1 < (f/fwo) < 10. Values o f j~  at the transition vary 
by only a factor of 2 over this same range of  interracial friction factor for j* > 1. 
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Figure 3. Dimensionless stratified regime transition for an upwardly inclined pipe. 
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Figure 4. Effect of  inteffacial Friction on the dimensionless stratified transition for an upwardly inclined pipe. 

Figures 3 and 4 show similar dimensionless transition boundaries for a 1 o upward inclination. 
Here, the interracial friction factor ratio in the range of l < (fJfwG) < 10 is more significant. 
The peak value of the liquid Froude number at the transition boundary varies by about a factor 
of 5 over this range of the friction factor ratio. 

Figures 3 and 4 also show that the transition boundary for the upwardly inclined pipes is 
not sensitive to the liquid-gas density ratio. This is because the solution does not exist in the same 
range of gas Froude number (j* < 0.1), where the density ratio matters in the horizontal pipe 
(figures 1 and 2). 

Crowley et al. (1992) presented extensive data comparisons showing that this trend of the 
one-dimensional wave theory is consistent with a wide range of experimental data. Data for both 
the effects of pipe inclination and a broad range of density ratios are available from the same test 
facility at large, 0.17 m, diameter (Crowley & Sam 1986). Therefore, we illustrate the comparisons 
of the dimensionless form of the one-dimensional wave model only with selected data from those 
experiments here. 

Figure 5 shows that the transition at low gas density (R = 620) is predicted well in a horizontal 
pipe, and the result is close to the Taitel-Dukler model (dashed line). Figure 6 shows that the 
transition is also predicted well at gas densities typical of gas and oil pipelines (R = 31). The 
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F i g u r e  5. Dimensionless stratified transition for a horizontal 0 .17m diameter pipe at low gas density 
(Crowley & Sam 19B6). 
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Figure 6. Dimensionless stratified transition for a horizontal 0.17 m diameter pipe at high gas density 
(Crowley & Sam 1986). 

transition lies at higher liquid Froude numbers at a high gas density (figure 6) than at low gas 
density (figure 5). The larger liquid Froude numbers and the upward trend of the transition at 
low gas Froude number are predicted by the one-dimensional wave analysis, but not the 
Taitel-Dukler (1976) model. One previous approach to account for this effect of the gas density 
was to increase the interfacial shear assumed in the Taitel-Dukler model. This approach has the 
right effect to achieve comparisons with the data, but the correct physical result is contained in 
the one-dimensional wave theory, without modification of the interfacial friction. Therefore, the 
one-dimensional wave theory is a more general approach, better applicable to conditions of low 
gas velocity and high gas density. 

The one-dimensional wave model also predicts the observed transition for upward pipe 
inclinations (figure 7) at 2 °. Because of the large sensitivity of the model to the interfacial friction 
factor ratio for upwardly inclined pipes (figures 3 and 4), these data in figure 7 have b~ n  used 
to select the recommended value of f/fwG = 5 in the analysis. That value is used for the 
one-dimensional wave model in figures 5 and 6. 
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Figure 7. Dimensionless stratified transition for an upwardly inclined 0.17 m diameter pipe at high gas 
density (Crowley & Sam 1986). 
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